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Three-Dimensional Hard Dumbbell Solid Free Energy
Calculation Via the Fluctuating Cell Model1

S. A. Kadlec,2,3 P. D. Beale,3 and J. C. Rainwater 2,4

Determination of the solid–liquid phase transition point of a molecular sub-
stance requires calculation of the free energy in both phases. Progress has
been made on this problem by modeling molecules as fused hard spheres
and adding attraction and electric multipole moments perturbatively. The
solid free energy of hard heteronuclear dumbbells of bond length L∗, used
to model diatomic molecules, can in principle be calculated exactly via the
Frenkel–Ladd method, but this is computationally intensive. Use of Lennard
Jones–Devonshire fixed cells to calculate free energy is much simpler compu-
tationally but is an approximation. The fluctuating cell model is investigated
as an alternative intermediate method which is still computationally simpler
than the Frenkel–Ladd method. As was found earlier in two dimensions, for
small L∗ the simple cell model is in better agreement with Frenkel–Ladd
than the fluctuating cell model, but for larger L∗ the fluctuating cell model
is in better agreement. The probability distributions of free volumes are also
analyzed and show different functional behavior for near-zero bond length
and appreciable bond length.

KEY WORDS: fluctuating cell model; free energy; hard dumbbell; simula-
tion; solid.

1. INTRODUCTION

The determination of the solid–liquid phase transition is of consider-
able current interest. Monson et al. [1]. have reviewed various methods
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available for solid–liquid equilibrium calculations. These methods detail
the calculation of the free energy in both the solid and liquid phases as
this is required to determine the phase transition. Some models ignore
intermolecular forces focusing on hard infinitely repulsive forces charac-
terized solely by the molecule’s shape and size. One question these mod-
els try to answer is how much physics can be realized by considering
only the molecular form. The hard-sphere model, for example, helps reveal
the basic physics involved in the freezing of inert gasses. Hard heteronu-
clear dumbbell models have helped explain the freezing of methyl chlo-
ride [2]. Hard chain molecules have provided insight into the freezing
of n-alkanes [3]. These hard-body models can serve as the foundation
to interactions that are more complicated. Such interactions as dipole
moments and van der Waals attraction can be added perturbatively.

There are a number of methods for calculating the free energy of
these hard-body models. In theory, thermodynamic integration can gen-
erate exact free energies. This method, however, is limited by long com-
putation times. The simple cell method of Lennard–Jones and Devonshire
approximates the free energy through calculation of the free volume avail-
able to a single particle in a cage (or cell) of nearby particles each fixed
to its respective lattice site [1]. This method leads to a first order approx-
imation of the free energy. The free volume is defined by

vf =
∫

cell

d�r e−βU(�r,�r1,...,�rQ), (1)

where Q is the number of nearest neighbors that form the cell and β is
the familiar inverse temperature. The integral in this equation is over the
configurations of a single particle within a cell, and U(�r, �r1, . . . , �rQ) is the
potential energy between the caged particle and its neighbors. In the case
of hard interactions, the Boltzman factor reduces simply to zero at the
edge of the cell and equates to unity within the cell’s boundary walls. The
reduced free energy can then be approximated by f ≈− ln

(
vf/l

D
)

where l
is an arbitrary length scale and D is the dimensionality of the system.

A natural extension of the simple cell method makes use of an equili-
brated system of hard particles in the solid state. This fluctuating cell the-
ory requires calculating and then averaging the free volume vf of many
particles of the system. The reduced free energy is then calculated as
f ≈ − ln

〈
vf/l

D
〉
. It should be noted that the work of Hoover et al. [4]

included an alternate expression for the free energy, falt ≈ − 〈ln (vf/l
D
)〉

.
However, the former expression was determined to better approximate the
free energy.
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Fig. 1. Single hard dumbbell with bond length, L.

A two-dimensional system of hard dumbbells was studied by Gay
et al. [5]. Their work indicates that the fluctuating cell theory produces
good free-energy approximations for this system. At near zero L∗ the
simple cell method actually performs better, but as the bond length is
increased, the fluctuating cell theory outperforms the simple cell. They
also determined that the functional form of the free-volume distribution
is markedly different for a system of near zero L∗ dumbbells and those of
larger L∗. The small bond length systems have free volume distributions
that peak at vf =0 while the elongated dumbbells have free volume distri-
butions that peak at some nonzero value.

One of us found an analytic solution to calculate the free volume of a
three-dimensional system of hard spheres [6]. This solution was developed
independently and concurrently with an analytic solution found by Sastry
et al. [7]. The forms of the two solutions are quite different but they pro-
duce identical free volumes.

In a collaboration between Lusk and Beale [8] to calculate the interfa-
cial free energy of grain boundaries of steric assemblies of elastic disks, the
fluctuation cell model proved beneficial. Unlike other methods, it did not
require an attractive potential and could be applied to a static snapshot
of an equilibrated system. The free-energy calculation required calibration
with the simple cell method on a homogenous system of disks.

2. METHOD

A Monte–Carlo simulation was performed on a system of three-
dimensional hard homonuclear dumbbells (Fig. 1) in the NVT ensemble.
The system was initiated in the CP1 solid phase with the number of par-
ticles being 6 × 6 × 4 in each of the three lattice directions. The correct
number density was imposed by scaling the lattice vectors of the close-
packed CP1 solid. Periodic boundary conditions were employed. Once
equilibrated, the free volume of each particle was calculated. Free energies
were derived from the average of the free volumes.
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3. CP1 CRYSTAL DETAILS

The CP1 crystal structure was first introduced by Vega et al. [9]; how-
ever, written details of the structure are lacking. An intuitive means for
visualizing the close-packed CP1 structure is as follows: (1) Label the two
spheres A and B of each dumbbell. (2) Orient all particles in the same
direction. (3) Make a close-packed triangular lattice of m×n particles out
of sphere A of the dumbbells. This defines the �a1 and �a2 lattice vectors. (4)
Rotate all particles about the center of sphere A such that sphere B of each
dumbbell touches sphere A of two of the dumbbells below. Rotate all the
dumbbells this way such that they are all oriented in the same direction.
All the B spheres now make a triangular close-packed lattice. (5) Take
another m×n dumbbells and place a triangular lattice of the A spheres on
top of the B spheres of the lower lattice such that each A sphere touches
three B spheres and each B sphere touches three A spheres (except for
edge dumbbells). (6) Orient the new dumbbells in the same direction as
those below. The lattice vector can be defined from the geometrical cen-
ter of one of the lower dumbbells to the geometrical center of the upper
adjacent dumbbell that is farthest away. Repeat steps 5 and 6 to build
the solid. The alternations in sphere placement should be constructed such
that as L∗ is reduced to zero, the solid would become an FCC close-packed
hard-sphere system with the usual XYZXYZ sequence of planer triangular
lattices. For this simulation, the solid was built only in the positive lattice
vector directions measured from an arbitrary origin.

The bond length L∗ =L/σ defines the orientation of the dumbbells in
the CP1 crystal where σ is the diameter of one of the spheres of the hard
dumbbell (Fig. 1). Throughout the rest of this discussion, all lengths will
be reduced by σ . The angle between �a3 and the normal to the plane of �a1
and �a2 is ψ = sin−1(L∗/

√
3). Defining a∗ as the magnitude of the �a1 and

�a2 lattice vectors, a∗ = |�a1|/σ =|�a1|/σ , gives the magnitude of �a3 as

a∗
3 =|�a3|/σ =Ra∗

√
3+5L∗2 +2

√
2L∗
√

3−L∗2/
√

3, (2)

where

R= a3/a1

(a3/a1)cp
, (3)

and (a3/a1)cp is the close-packed ratio. An arbitrary density can be
imposed by scaling the �a1 and �a2 lattice vectors of the close-packed system
by a∗ and by scaling the close-packed �a3 lattice vector by Ra∗. The
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Fig. 2. Free volume distribution for small L∗. Note that the probability, P ,
of zero free volume tends toward zero. Here ρ∗ =1.18 and R=1.00.

relation between the nearest-neighbor distance and density, ρ∗ = ρd3 =
Nd3/V is as follows:

a∗(ρ,L∗,R)=

 2+3L∗ −L∗3

Rρ∗
(√

2+L∗
√

3−L∗2
)



1/3

. (4)

Here, d is the diameter of a sphere with the same volume as the dumbbell,

d

σ
=
(

1+ 3
2
L∗ − L∗3

2

)1/3

. (5)

It should be noted here that the expression for the close-packed den-
sity as reported by Vega et al. [9] is in form quite different then the expres-
sion found for this paper. The close-packed density used here is

ρ∗
cp = 2+3L∗ −L∗3

√
2+L∗
√

3−L∗2
. (6)

The form used by Vega et al. is much more complicated; however,
computationally these two forms are equivalent. They produce identical
close-packed densities.

In the simulation, cell lists were employed to limit the number of
distance calculations required when determining particle overlap. It is
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important to ensure that the cells are not too small. If they are, two par-
ticles may overlap that are not in neighboring cells. The largest distance
between two overlapping dumbbells is L∗ +1. This must be the minimum
distance between two parallel walls of the cell. The edges of the cells were
along lattice vectors: e1 along �a1, e2 along �a2, etc. The minimum lengths
of these edges were determined:

e1 = e2 =
√

9+14L∗2 −3L∗4 +8
√

2L∗
√

3−L∗2 (L∗ +1)
√

3
(√

2+L∗
√

3−L∗2
) , (7)

e3 =
√

3+5L∗2 +2
√

2L∗
√

3−L∗2 (L∗ +1)
√

2+L∗
√

3−L∗2
. (8)

Space was divided into an integral number of cells in each of the three
lattice vector directions such that each cell had the smallest edge lengths
possible.

4. TRIAL MOVES

The Monte–Carlo simulation required trial translational and orienta-
tion moves. The orientation of each dumbbell was tracked by a unit vector
v̂i , i=1, . . . ,N connecting the centers of the spheres of the dumbbell. 5000
Monte–Carlo steps were used to equilibrate the system, and 20 indepen-
dent systems were generated for each free-energy calculation. The transla-
tional and orientation step sizes were adjusted to allow for a roughly 50%
acceptance rate of each trial move.

Translations were performed by randomly choosing a displacement
along each of the lattice vector directions. In addition, positions of each
particle were tracked in the lattice vector coordinate system. Before any
distance calculations were performed, displacement vectors were trans-
formed to a Cartesian coordinate system. The x-axis was aligned along �a1,
and the xy plane was positioned in the �a1�a2 plane. In Cartesian coordi-
nates,

�a∗
1 =a∗ [1,0,0] , (9)

�a∗
2 =a∗
[

1
2
,

√
3

2
,0

]
, (10)
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�a∗
3 =Ra∗

[
1
2
(1+L∗2) ,

1

2
√

3
(1+L∗2),

1√
3

(√
2+L∗√3−L∗2

)]
.

(11)

The transformation matrix is

�rCC =




1 1/2

√
3(1+L∗2)

2
√

3+5L∗2 +2
√

2L∗
√

3−L∗2

0
√

3/2
(1+L∗2)

2
√

3+5L∗2 +2
√

2L∗
√

3−L∗2

0 0

√
2+L∗√3−L∗2√

3+5L∗2 +2
√

2L∗
√

3−L∗2




�rLVC, (12)

where �rCC is the position vector in Cartesian coordinates, and

�rLVC =gâ1 +hâ2 + j â3 =

gh
j


 (13)

is the position vector in the lattice vector coordinate system. Note that all
direction vectors are unit vectors.

Orientation trial moves were generated by picking a random unit
3-vector, t̂ . This vector was then shrunk by an amount, ω and added to
the original orientation vector, ûi . The new orientation vector was then
normalized and given by

û
′
i =

ûi +ωt̂∣∣ûi +ωt̂∣∣ . (14)

5. FREE-ENERGY CALCULATION

Upon equilibration, the free volume of each particle was calculated
via Monte–Carlo integration. One dumbbell was selected and wandered
randomly to determine the maximum box volume, Vb within which to
sample points. The minimum and maximum coordinates in all three of the
lattice vector directions were recorded

(
bi,min, bi,max, i=1,2,3

)
. Random

orientations were chosen when the dumbbell hit another particle to deter-
mine if the range of motion could be extended by extreme variation in
the orientation. After the edges of the integration space were determined,
each edge

(
bi,max −bi,min

)
was increased by 10% about its center just to

ensure that the entire free volume was contained within the box. When a
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large enough number of random walk steps are performed, the free vol-
ume becomes independent of the number of steps taken.

After the sample space was determined, a Monte–Carlo integration
was performed over three translational and two angular dimensions. The
angular integration was performed by picking random unit vectors to
specify the dumbbell’s orientation. The number of accepted positions, NA
was tracked out of the total number of trial positions, NT. A free volume
was calculated as v∗

f ,i = NA
NT
V ∗
b , i=1, . . . ,N where

V ∗
b =

√
6+√

3L∗√3−L∗2

2
√

3+5L∗2 +2
√

2L∗
√

3−L∗2

3∏
i=1

(
b∗
i,max−b∗

i,min

)
. (15)

The free volume of each particle was calculated in this manner. The
free energy was approximated by f ∗ = (F/NkBT )−�=− ln

(〈
v∗

f ,i

〉)
where

� is the kinetic part of the free energy:

�=− 1
N

ln

{(
8π2σ 3
)N

h6N

∫
d �p1 ×· · ·×d �pNe−β

∑N
i=1

�p2
i

2m

×· · ·×
∫
d �L1 ×· · ·×d �LN exp

[
−β

N∑
i=1

(
L2
x,i +L2

y,i

2I0
+ L2

z,i

2I1

)]
,

(16)

where I1 is the moment of inertia about the axis connecting the spheres of
the dumbbell, and I0 is the moment of inertia about the two axes perpen-
dicular to this.

6. RESULTS

Table I shows the Frenkel–Ladd method results from Vega et al. They
are compared to the fluctuating cell and simple cell results. This table
shows that at low values of L∗ the simple cell method does a better job
at approximating the free energy. According to these results, if L∗�0.6
then the fluctuating cell method approximates the free energy better. Note
that the fluctuating cell method always produces free energies that are
higher than those computed via thermodynamic integration. Conversely,
the simple cell method always underestimates the free energy. Average free
volumes are listed in Table II.

In accordance with the work of Gay et al. [5], the effect of bond
length on the free-volume distribution was investigated. Figure 2 shows
the distribution for small L∗. Here it is clear that the probability of hav-
ing zero free volume is tending toward zero although there is not enough
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Table I. Free Energies Calculated by Three Different Methods (numbers in Parenthesis
Indicate the Uncertainty in the Last digit printed)

L∗ R ρ f ∗a f ∗b f ∗c diff d% diff e%

0.0 1.00 1.041 4.96 5.75(2) 4.91492(6) 15.9 0.909
0.3 0.94 1.235 9.96 10.73(3) 9.5833(3) 7.73 3.78
0.6 0.96 1.289 12.86 13.38(3) 12.1141(7) 4.04 5.80
1.0 0.96 1.180 13.34 13.74(3) 12.595(1) 3.00 5.58

a Vega et al. [9] results.
b Fluctuating cell results.
c Simple cell results.
d
(
f ∗b −f ∗a)/f ∗a .

e (f ∗a −f ∗c)/f ∗a .
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Fig. 3. Here, the probability distribution peaks as the free volume approaches
zero (perhaps a singularity). Again, ρ∗ =1.18 and R=1.00.

evidence to state that the probability is exactly zero at zero free volume.
There is a peak in the distribution at a nonzero free volume. As the bond
length is increased, however, the orientation of the dumbbell plays a larger
role in determining the free volume. Even at L∗ = 0.10 the probability of
having a zero free volume tends to a large nonzero value (perhaps even
a singularity). The peak in the distribution occurs at zero free volume
(Fig. 3).
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In the hard-sphere limit of L∗, the simple cell outperforms the fluc-
tuating cell model; however, the fluctuating cell model may still have
utility in free-volume calculations even for these systems. For L∗ = 0, the
difference between the simple cell and fluctuating cell free energies was
determined and is plotted in Fig. 4. The free-energy difference is nearly
constant. This is because the fluctuating-cell to simple-cell free-volume
ratio is nearly independent of density. In fact, Fig. 5 shows that the free-
volume distribution is density independent. The fluctuating cell method
could be used to determine the free energy if properly calibrated. When
calculating the free energy of grain boundaries, this method would be pref-
erable. Also, since most simulations require fluctuation of the system, a
snapshot of the equilibrated system could lead to a fairly good free-energy
estimate simply by calculating the free-volume.

The results of the 3D fluctuating cell model are analogous to the fluc-
tuating cell model applied to 2D homonuclear dumbbells. Gay et al. [5]
describes the same trend in the utility of the fluctuating cell model. At
zero L∗ the simple cell model proves more accurate than the fluctuat-
ing cell. As the bond length is increased, the fluctuating cell model better
approximates the free energy. It was noted that the transition value of
L∗ where the fluctuating cell model outperformed the simple cell model
was larger in the three dimensional case than in two dimensions. Even
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Table II. Average Free Volume at Various
Bond Lengths and at Constant ρ∗ = 1.18
and R = 1.00 (Numbers in Parenthesis give
an Estimate of the Uncertainty in the Last
Digit(s) Printed)

L∗ 〈
v∗

f

〉
0.0 6.20(4)×10−4

0.01 6.18(4)×10−4

0.10 3.43(3)×10−4

0.20 9.53(14)×10−5

0.30 5.12(13)×10−5

0.40 3.60(9)×10−5

0.60 1.56(4)×10−5

1.00 9.6(2)×10−7

at L∗ =0.3, in three dimensions, the simple cell was more accurate. In
addition, the free-volume distribution of the three-dimensional system has
similar characteristics to that of the two-dimensional system. At some
appreciable L∗ the distribution switches from peaking at some nonzero
free volume to peaking at v∗

f =0.0.
The simple cell free-energy dependence on L∗ is also interesting. Near

L∗ = 0, in both two [5] and three dimensions, the free energy as calcu-
lated by the simple cell method decreases with increasing L∗ (Fig. 6). At
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Fig. 6. Comparison of the free energy as calculated by the fluctuating and simple
cell models. Here, ρ∗ =1.18 and R=1.00.

some small L∗, however, the trend is reversed as the free energy increases
with increasing L∗. This is most likely due to the locking of the dumb-
bell’s rotation as the bond length is increased. This decreases the orienta-
tions available and thus the total free volume. At small rotation, L∗ plays
little role in the free volume as the solid is a plastic crystal. Note that the
fluctuating cell model, however, gives free energies that are monotonically
increasing for all L∗ values.

One of us derived an analytic solution for the free volume of a three-
dimensional system of hard spheres [6] in agreement with an independent
analytic solution of Sastry et al. [7]. This solution for the free volumes was
coded, and the results were compared with those found by Monte–Carlo
integration. Although the code for the analytic method either crashed or
produced clearly incorrect results roughly 0.05% of the time, it usually
agreed with Monte–Carlo integration within the estimated uncertainty.

7. CONCLUSION

From the free-energy calculations via thermodynamic integration on
the CP1 crystal, the simple cell approximates the free energy better only
near the hard-sphere limit. The real benefit of the fluctuating cell model
lies in its ability to give thermodynamic information about a system from
a single configuration. In addition, there appears to be improvement in the
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free-energy calculation over the simple cell for dumbbells with appreciable
elongation.
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